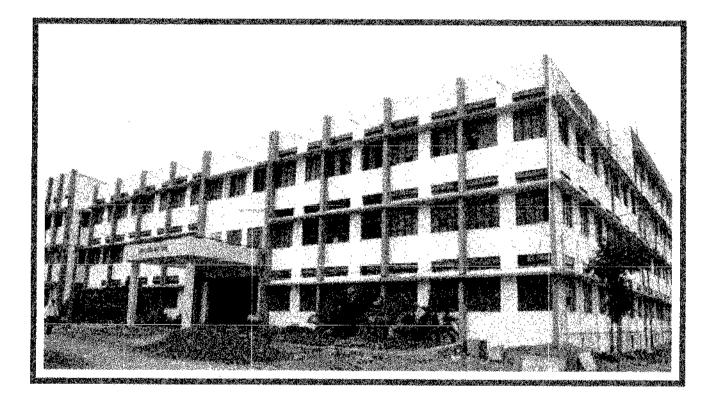


Certificate

This is to certify that

Dayanand College of Pharmacy, Latur

has successfully undergone Green and Environmental Audit for the year 2019-2020 by Greenex Environmental, Pune.


Place: Pune

Arati Bhosale EMS Lead Auditor Greenex Environmental

Green and Environmental Audit Report 2019-2020

Dayanand College of Pharmacy Barshi Road, Latur - 413531.

By GREENEX ENVIRONMENTAL T-71,- 1A/2, Telco Road, General Block, Near Indrayani Corner, above Kotak Mahindra bank, MIDC, Bhosari, Pune – 411026

Acknowledgement

We would like to express our sincere gratitude towards all who made it possible for us to complete the Green Audit of Dayanand College of Pharmacy, Latur smoothly. We would like to extend our gratitude to Dr. Kranti Satpute, Principal, Dayanand College of Pharmacy for offering us the opportunity to perform Green Audit of Dayanand College of Pharmacy, Latur. We would also like to thank Mr. Raghunath Wadulkar and MR. Rohit Sarda, Assistant Professors, Dayanand College of pharmacy for making time and assisting us throughout the audit.

We would like to thank each and every staff member of the college who helped us collect the resourceful data. Last but not the least; we thank our team for their unwavering support.

- Greenex Environmental

Sr. No.	Content	Page No
· 1.0	Introduction	
	1.1 Dayanand Education Society, Latur	
	1.2 Dayanand College of Pharmacy	1-8
	1.3 Vision and Mission of College	
•	1.4 Organizational Chart of College	
2.0	Green Audit and Environmental Audit	9-13
3.0	Objectives of Green Audit	14
4.0	Goals of Green Audit	15
5.0	Target Areas of Green Audit	16
6.0	Methodology	
	6.1 Data Collection	
	6.2 Survey by Questionnaire	17-18
	6.3 Data Analysis	
	6.4 Recommendations and Reporting	
7.0	Detailed Analysis	
	7.1 Waste Management	
	7.2 Energy Conservation and Management	
~	7.3 Water Quality and Conservation	19-51
	7.4 Biodiversity Conservation	
	7.5 Air Quality	
	7.6 Carbon Footprint	
8.0	Innovative Strides	52-55
9.0	Facilities by campus	56-57
10.0	Recommendations	58-59
11.0	Conclusions	60
12.0	Environment Management Plan	61-62
13.0	References	63
	Annexure	64-66
	Our Team	67

INDEX

Figure 1: Dayanand Education Society

1.1.1 Infrastructure

Dayanand Education Society has 14 buildings in the campus namely:

- 1. Dayanand College of Commerce
- 2. Dayanand College of Art
- 3. Dayanand Science College
- 4. Dayanand College of Law
- 5. Dayanand College of Pharmacy
- 6. Dayanand Collage of Animation
- 7. Dayanand College of fashion designing and interior decoration
- 8. Dayanand College of Architecture
- 9. Girl's Hostel
- 10. Boy's Hostel

11. Library

- 12. Auditorium
- 13. Indoor Stadium and Gymnasium
- 14. Cricket Ground

Figure 2: Google Earth image of Dayanand Education Society

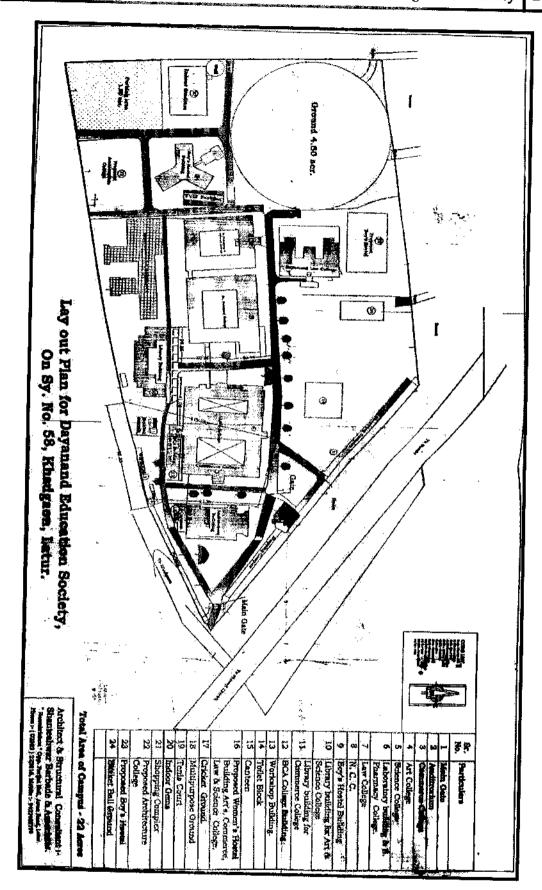


Figure 3: Layout of the Education Society

1.2 Dayanand College of Pharmacy

With the view of fulfilling the needs of rising Pharmacy profession by donating professionally competent and technically skilled Pharmacy graduates in the region, state and the Nation Dayanand college of pharmacy is a pioneering institution in the pharmaceutical education was established in 2009 with the aim to provide better education and knowledge of pharmaceutical science, in addition to this to contribute to the health of the society through educational and research programmes. The Pharmacy institution started with B.Pharmacy (Four Years Degree Course) and recognized by AICTE, New Delhi, and DTE Mumbai & affiliated to S.R.T.M.U. Nanded.

Dayanand College of pharmacy initially started course B.Pharmacy in 2009; later in 2019 new course D.Pharmacy was started. Till date approximately 400 students have been graduated and 60 diploma students have been passed out from the organization. College has excellent infrastructure and well qualified expert faculty. Dayanand College of Pharmacy has excellent pharmacy setup that allows the students to get a better grasp of the practical subject knowledge. Our prime focus is always laid on research as this sole factor shall contribute greatly towards a successful career ahead. This is achieved by numerous state-of-the-art labs of various departments like pharmaceutics, pharmaceutical chemistry, pharmacology, pharmacognosy supported by well-trained lab technicians where students get to perform practical under the guidance of experienced faculty. College library is fully computerized by using software for maintaining the library operations. Hostel facility is provided for girls as well as boys.

Every year college actively organizes different seminars, webinars, guest lectures from national and international speakers for students. Every year, college is taking active participation in NSS activities and camp to improve social behaviour of students. For improving mental and social health of students, college organizes free yoga sessions for students. In every month, alumni interaction is arranged for students to guide students regarding scope and opportunities in various fields as well as higher education.

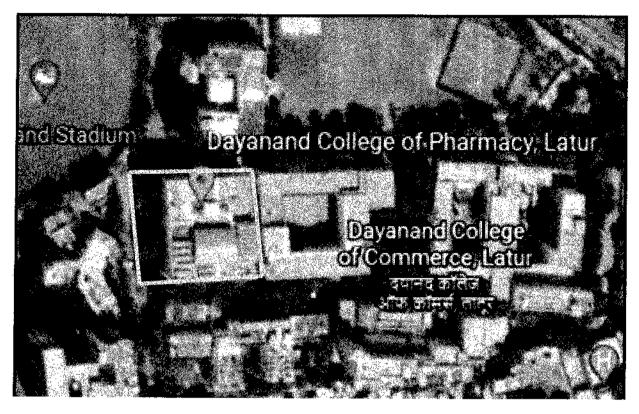


Figure 4: Google Earth image of Dayanand College of Pharmacy



Figure 5: Dayanand College of Pharmacy

1.3 Vision and Mission of College

Vision

To nurture the future pharmacists with focused approach for overall professional development and excellence.

Mission

1 - To inculcate the research environment amongst staff and students

2 – To assist the students for financial support during their education by introducing various scholarship schemes offered by different agencies/NGO'S

3 – To provide the students all the learning facilities, along with understanding of ethical values and morality

Program Educational Objectives

1 - Pharmacy Graduates prepared for higher studies and career growth

2 – Pharmacy Graduates encouraged to acquire knowledge and competency as per the need of pharmaceutical and allied industries

3 – Pharmacy Graduates motivated to serve the community by creating awareness about social and healthcare services.

1.4 Organizational Chart of Dayanand College of Pharmacy

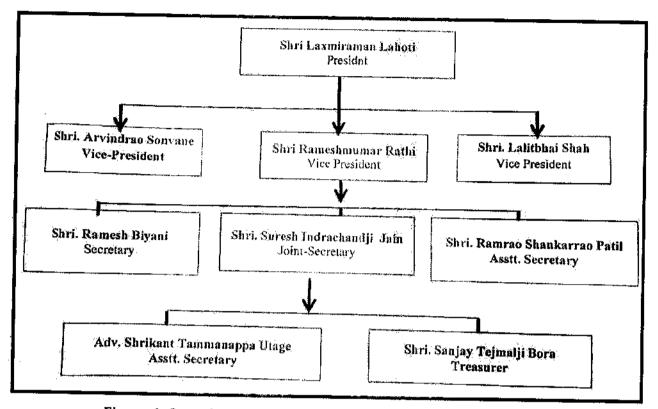


Figure 6: Organizational Chart of Dayanand College of Pharmacy

2.0 Green Audit and Environmental Audit

2.1 Green audit

Green Audit is a process of systematic identification, quantification, recording, reporting and analysis of components of environmental diversity of various establishments. It aims to analyze environmental practices within and outside of the concerned sites, which will have an impact on the eco-friendly ambience.

Green audit can be a useful tool for a college to determine how and where they are using the most energy or water or resources; the college can then consider how to implement changes and make savings. It can also be used to determine the type and volume of waste, which can be used for a recycling project or to improve waste minimization plan. It can create health consciousness and promote environmental awareness, values and ethics. It provides staff and students a better understanding of Green impact on campus. Thus it is imperative that the college evaluate its own contributions toward a sustainable future. As environmental sustainability is becoming an increasingly important issue for the nation, the role of higher educational institutions in relation to environmental sustainability is more prevalent.

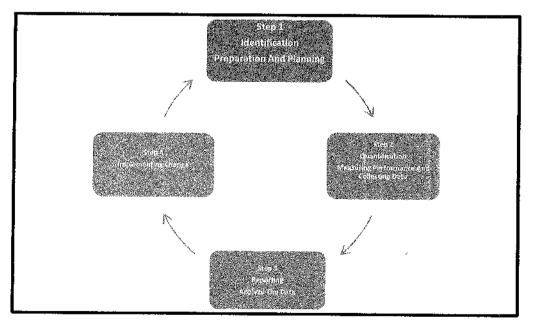


Figure 7: Steps of Green Audit

The rapid urbanization and economic development at local, regional and global level has led to several environmental and ecological crises. On this background it becomes essential to adopt the system of the Green Campus for the institutes which will lead for sustainable development and at the same time reduce a sizable amount of atmospheric carbon-di-oxide from the environment. Green Audit is assigned to the Criteria 7 of NAAC, National Assessment and Accreditation Council that declares the institutions as Grade A, Grade B or Grade C according to the scores assigned at the time of accreditation. Moreover, it is a part of Corporate Social Responsibility of the Higher Educational Institutions to ensure that they contribute towards the reduction of global warming through Carbon Footprint reduction measures.

Therefore, the purpose of the present green audit is to identify, quantify, describe and prioritize framework of Environment Sustainability in compliance with the applicable regulations, policies and standards.

2.1.1 Need for Green Audit

The modernization and industrialization are the two important outputs of twentieth century which have made human life more luxurious and comfortable. Simultaneously, they are responsible for voracious use of natural resources, exploitation of forests and wildlife, producing massive solid waste, polluting the scarce and sacred water resources and finally making our mother Earth ugly and inhospitable. Today, people are getting more familiar to the global issues like global warming, greenhouse effect, ozone depletion and climate change etc. Now, it is considered as a final call by mother Earth to walk on the path of sustainable development. The time has come to wake up, unite and combat together for sustainable environment.

Green Audit is the most efficient ecological tool to solve environmental problems. It is a process of regular identification, quantification, documenting, reporting and monitoring of environmentally important components in a specified area. Through this process the regular environmental activities are monitored within and outside of the concerned sites which have direct and indirect impact on surroundings. Green audit can be one of the initiative for such institutes to account their energy, water resource use as well as

wastewater, solid waste, E-waste, hazardous waste generation. Green Audit process can play an important role in promotion of environmental awareness and sensitization about resource use. It can create consciousness towards ecological values and ethics. Through green audit one can get direction about how to improve the condition of environment.

The major objective of performing Green Audit is controlling the pollution. It also helps in improving the safety and to making sure the prevention and reduction of the waste. It also provides performance reviews of working facilities and its possible impact on the surroundings. Audits enable the management of an organization to see exactly what is happening within the organization and to check the operation (or otherwise) of systems and procedures. Environmental auditing can help to reveal the likely weaknesses of an organization's strategy, therefore reducing the risk of unexpected events. A properly prepared and conducted environmental audit will bring real benefits to an organization committed to act on the results.

2.2 Environmental Audit

An environmental audit is a type of evaluation intended to identify environmental compliance and management system implementation gaps, along with related corrective actions. In this way they perform an analogous (similar) function to financial audits. There are generally two different types of environmental audits: compliance audits and management systems audits.ISO 14001 is a voluntary international standard for environmental management systems ("EMS"). ISO 14001:2004 provides the requirements for an EMS and ISO 14004 gives general EMS guidelines.

The Supreme Audit Institution (SAI) in India is headed by the Comptroller and Auditor General (CAG) of India who is a constitutional authority. The audit conducted by CAG is broadly classified into Financial, Compliance and Performance Audit. Environmental audit by SAI India is conducted within the broad framework of compliance and performance audit.

Environmental auditing is a systematic, documented, periodic and objective process in assessing an organization's activities and services in relation to:

- Assessing compliance with relevant statutory and internal requirements
- Facilitating management control of environmental practices
- Promoting good environmental management
- Maintaining credibility with the public
- Raising staff awareness and enforcing commitment to departmental environmental policy
- Exploring improvement opportunities
- Establishing the performance baseline for developing an Environmental Management System (EMS)

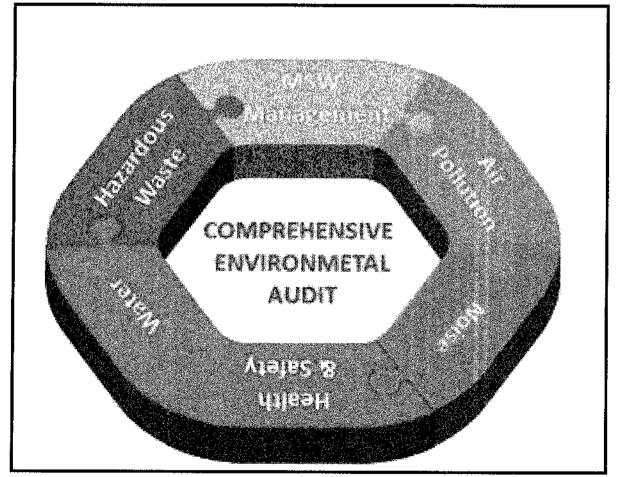


Figure 8: Aspects of Environmental Audit

3.0 Objectives of Green audit

The overall objective of green auditing is to help safeguard the environment and minimize risks to human health. The key objectives of an environmental audit therefore are to:

- To determine how well the environmental management systems and equipment are performing
- To verify compliance with the relevant national, local or other laws and regulations
- To minimize human exposure to risks from environmental, health and safety problems.
- More efficient resource management
- To provide basis for improved sustainability
- To enable waste management through reduction of waste generation, solid- waste and water recycling
- To create green plastic free campus and evolve health consciousness among the stakeholders
- To Recognize the cost saving methods through waste minimizing
- To Point out the prevailing and forthcoming complications
- Impart environmental education through systematic environmental management approach and improving environmental standards
- Financial savings through a reduction in resource use
- Enhancement of college profile
- Developing an environmental ethic and value systems in students

4.0 Goals of Green Audit

- To achieve compliance standards and establish a report with regulatory bodies
- To identify needs, strengths, and weaknesses of the educational institute
- To review management systems and identify liabilities
- To assess environmental performance of the educational institute with the help of direct assessment.
- To promote environmental awareness among the staff and students
- To conserve non-renewable resources for betterment of future
- The long term goal is to collect the baseline data in terms of environmental parameters, calculate its impact on the environment and recommend measures to reduce them

Figure 9: Goal of Green Audit

5.0 Target Areas of Green and Environmental Auditing

- Energy Conservation and Management: This indicator addresses energy consumption, energy sources, energy monitoring, lighting, appliances, and vehicles.
- Water Quality and Conservation: This indicator addresses water consumption, water sources, irrigation, storm water, appliances and fixtures.
- **Biodiversity Conservation**: All plant and animal species including microorganisms are a part of biodiversity. All types of gardens, lawns and trees are considered in this aspect.
- Waste Management: This indicator addresses all types of waste from college and associated amenities. The minimization, safe handling, and ultimate elimination of these materials are essential to the long-term health of the planet.
- **Carbon Footprint:** This aspect is for quantifying the carbon emissions from all the parts of the institution and quantifying how much of it is sequestrated with the help of landscape.

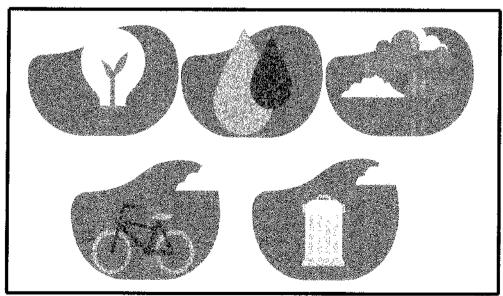


Figure 10: Target Areas of Green Audit

6.0 Methodology

6.1 Data Collection

In preliminary data collection phase, exhaustive data collection is performed using different tools such as preparation of questionnaire, physical inspection of the campus, observation and review of the documentation, interviewing key persons, etc. Focus groups, if practiced, can also be a vital part of data collection stage to acquire qualitative information. The discussion should be focused on identifying the attitudes and awareness towards environmental issues at the institutional and local level. Questionnaire (Annexure) prepared to conduct the green audit in the campus is in accordance with the guidelines, rules, acts and formats prepared by Ministry of Environment and Forest, New Delhi, Central Pollution Control Board and other statutory organizations. The data covers the target areas to summarize the present status of environment management in the campus.

6.2 Survey by Questionnaire

Baseline data for green audit report preparation was collected by questionnaire survey method. Most of the guidelines and formats are based on broad aspects. Therefore, using these guidelines and formats, combinations, modifications and restructuring was done and sets of questionnaires were prepared as solid waste, energy, water, biodiversity, carbon footprint. All the questionnaires comprises of group of modules. The first module is related to the general information of the concerned department, which broadly includes name of the department, month and year, total number of students and employees, visitors of the department, average working days and office timings etc. The next module is related to the present consumption of resources like water, energy, or the handling of solid and hazardous waste. One separate module is based on the questions related to the losses. Another module is related to maintaining records, like records of disposal of solid waste, records of solid waste recovery etc

6.3 Data Analysis

The data required for the analysis is taken from the data collection, it includes: calculation of energy consumption, analysis of latest electricity bill of the campus, measuring water consumption, carbon foot printing, etc. The data from questionnaire and survey forms is tabulated for the convenience of data availability; Recommendations and Environmental Management Plan is built according to the analysis done in this step.

6.4 Recommendations and Reporting

Based on the data analysis step, some recommendations in the target areas are made. Specific measures are suggested to reduce water and energy consumption. Proper treatments of waste are suggested with respect to waste collection, waste disposal and recycling. Recommendations to reduce the use of fossil fuels are made for the betterment of community health. Proper disposal of hazardous waste is suggested to prevent mishaps. Management also takes into account the suggestions related to reducing their carbon footprint.

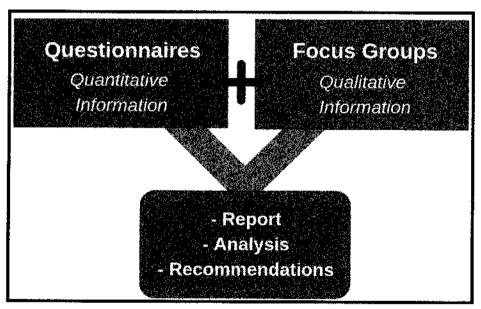


Figure 11: Green Audit Methodology

7.0 Detailed Analysis

7.1 Water quality and conservation

We investigate the relevant method that can be adopted and implemented to balance the demand and supply of water. The overall objective of conducting a water audit is to identify opportunities to make system or building water use more efficient.

This indicator addresses water consumption, water sources, irrigation, storm water, appliances and fixtures. The data collected from all the sections is examined and verified. Water consumption data tabulated below is then used for analysis and reporting.

a) Water Consumption:

Total Water Consumption of Dayanand College of Pharmacy is 11.5m³/day Table No. 1: Daily Water Consumption

Parameter	Quantity	Total water consumption		
Total Overhead tanks	6			
Capacity of each tanks	1 - 6m ³			
	$3 - 1m^3$			
	$1 - 2m^3$	11.5 m ³		
	$1 - 0.5 m^3$			
Total capacity	11:5 m ³			
Frequency of water filling	Once a day			

There are 6 overhead tanks of 1 m^3 , 6m^3 , 2m^3 and 0.5m^3 each in total on the roof with the capacity of 11.5 m^3 which is filled once a day.

b) Current practices of waste water management:

Conserving water is important because it keeps water pure and clean while protecting the environment. Conserving water means using our water supply wisely and be responsible. As every individual depends on water for livelihood, we must learn how to keep our limited supply of water pure and away from pollution.

Sewage treatment plant (STP) treats about 30 m³ of water per day which comes from girls hostel and boys hotel and the treated water is then reused for watering plants and cricket stadium ground.

Treatment scheme:

To have eco-friendly and natural treatment, this plant is designed based on the biological treatment concept. This means naturally occurring microbes removes or degrade the organic matter present in the sewage and at the end the clean water is available for non-potable usage or to dispose safely in the drainage or the river bodies as per the norms.

The treatment is done in following steps:

1. Pre-treatment:

- 1.1 Screening: This is the first units of the plant in which large or floating materials in the sewage gets arrested and blockage or choking of the downstream equipment's can be avoided. This arrested material will be removed manually and then will be disposed of suitably.
- 1.2 Equalization: To absorb variation in quantity and quality of sewage and to provide uniform flow at the downstream treatment process, a collection or equalization tank is provided. This will avoid shock loading and process upsets of the treatment plant.
- **1.3** Fine Screening: After the separation of floating materials and equalization of raw influent form equalization tank will pass through the fine screen which having 4 mm pore size and separate the fine particles from the raw effluent.

2. Secondary Treatment:

- 1.1 Biological Treatment: This is the main section of the plant where degradation of organic pollutants with the help of aerobic micro-organism takes place. To provide higher surface area for micro-organism, floating media is provided. On which micro-organism growth takes place.
- **1.2** Tube Settler: Gravity overflow from the bioreactor is collected in the tube settler tank. In this settling tank, generated sludge from the bioreactor undergoes a gravity settling.

1.3 Disinfection: Supernatant from Tube settler, flow by gravity to the Filter Feed tank. To disinfect the harmful bacteria in the treated water as well as to remove the refractory organics from treated water, in this tan 'Chlorine with the help of dosing system.

3. Tertiary treatment

Secondary treated water will be further passed through sand media filter followed by activated carbon filter.

The Clarified water is first passed through a Pressure Sand filter to reduce the suspended solids and organic matter present in the raw water. Pressure sand filter bed consists of multi-grade Sand media the filter will have to be washed with the help of raw water for 10 to 15 minutes daily. This filter is provided to keep a check on the suspended solids.

The plant is designed to treat sewage generated having following characteristics:

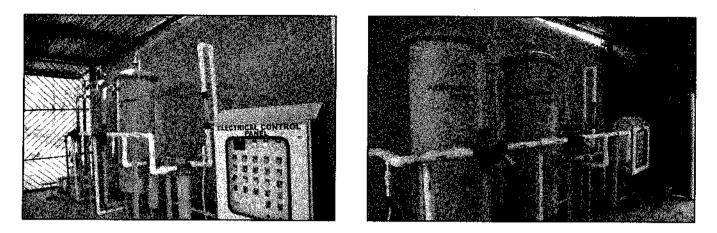

Particulars	Characteristics
Nature of waste water	Domestic sewage
Flow	30 m ³ /day
Average flow	1.25 m³/hr
Operating period	16 hrs/day
Design average flow	2.5 m ³ /hr

Table No. 2: Daily specifications of STP

Raw sewage parameter (at the inlet of collection tank/ septic tank):

Table No. 3: Raw sewage parameter

Sr. No.	Parameters	Range	Unit
-1	рН	6.5-8.0	
2	COD RODUE days of or	<350	Mg/lit
4	BOD(5 days @ 25 C) Suspended solids	<300 <500	Mg/lit
5	Oil and grease	<500	Mg/lit Mg/lit

Figure 12: Sewage Treatment Plant

Treated water parameter (after tertiary filtration system):

Table No. 4: Treated water parameter

Sr. No.	Parameters	Range	Unit
1	Hq	6,5-8.0	
2	COD	<30	Mg/lit
3	BOD(5 days @ 25 C)	<10	Mg/lit
4	Suspended solids	<05	Mg/lit
5	Oil and grease	<01	Mg/lit

Rainwater harvesting: Rainwater harvesting (RWH) is the collection and storage of rain, rather than allowing it to run off. Rainwater is collected from a roof-like surface and redirected to a tank, deep pit.

Rain Water Harvesting is practiced by the institute that produces 530 m³ of water.

Campus has prepared pits for rainwater harvesting in the following places:

Table No. 5: Rainwater harvesting details

Sr. No.	Building name Size of rainwater		No. of pits
		harvesting area Sq ft	
1.	Dayanand BCA college	4455	02
2.	Dayanand canteen	11657	04
3,	Dayanand swanstha karyalay	17800	18

4.	Dayanand arts college	23340	04
5,	Dayanand commerce college	25343	04
6.	Dayanand indoor stadium	12920	02
7.	Dayanand commerce library	2704	01
8.	Dayanand arts and science library	7748	03
9,	Dayanand boys hostel	8250	06
10.	Dayanand girls hostel	25619	05
11.	Dayanand pharmacy college	11173	03
12.	Dayanand law college	12792	02
13.	Dayanand science college	49781	05
14.	Dayanand rashtriya pati ground	163800	04
15,	Dayanand parking ground	13780	02
<u>, roquan selata selata</u>	Total	512173	65

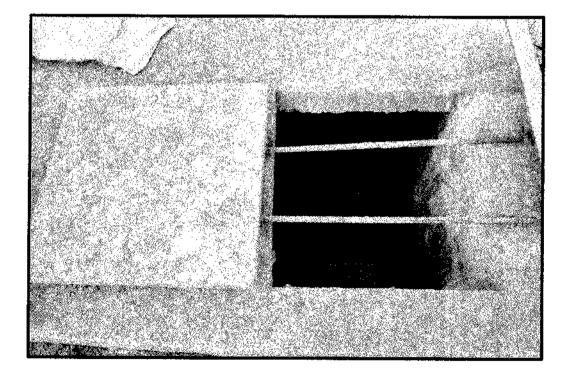


Figure 13: Rain Water Harvesting

7.2 Energy Conservation and Management

This indicator addresses energy consumption, energy sources, energy monitoring, lighting, appliances, and vehicles. Energy sources utilized by all the departments and services of college include electricity, liquid petroleum and LPG. Data for electricity consumption of the college for various departments was collected and is listed below.

a) Electricity consumption:

Total electricity consumption of Dayanand College of Pharmacy is 4717 KWH/month

Sr. No.	Electricity Consumption (KWH per month)	Source
1.	4717	MSEDCL
2.	2890	Solar Panels

Table No. 6: Electricity Consumption per month

Alternate Energy Initiatives:

The Institute has installed Solar Power Plant.

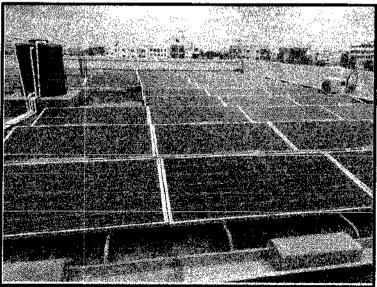
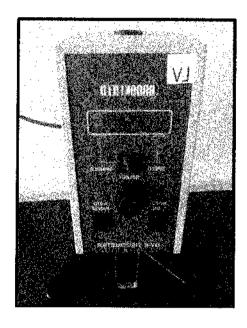
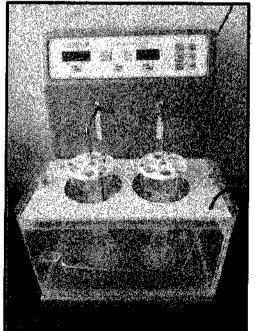
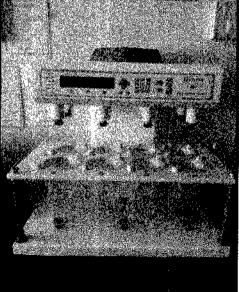




Figure 14: Solar Panels on Rooftop


Annual Power requirement met by renewable energySource

19 KWP Total Power generated KWH = **34675** units /year

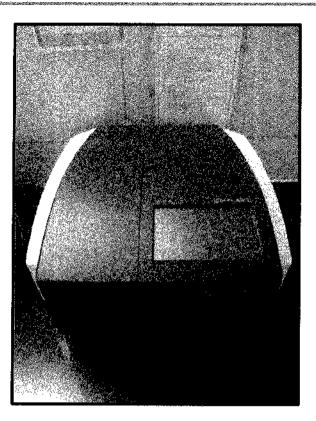


Figure 15: Equipments in the labs

b) Current practices for energy management

With billions of harmful emissions in the atmosphere, cutting back is always a good thing. In turn, conserving energy produces a higher quality of life. Reduced emissions result in cleaner air quality. In addition, it helps create a healthier planet, or at least helps sustain the resources we already have.

The institution has installed solar panels on the roof that produces renewable energy to try to meet the increased electricity demand. Currently, the institute has solar panels that contribute to 61.27% of their yearly electricity consumption.

7.3 Waste Management

Human activities create waste, and it is the way these wastes are handled, stored, collected and disposed of, which can pose risks to the environment and to public health. Solid waste can be divided into three categories: bio-degradable, non-biodegradable and hazardous waste. Bio-degradable wastes include food wastes, canteen waste, wastes from toilets etc. Non-biodegradable wastes include what is usually thrown away in homes and schools such as plastic, tins and glass bottles etc. Unscientific management of these wastes may cause harmful discharge of contaminants into soil and water supplies, and produce greenhouse gases contributing to global climate change respectively. We collected the details of solid waste generation using questionnaires and observations and tabulated them below. We also diagnosed the prevailing waste disposal policies and suggested the best way to combat the problems in the recommendations. E-waste is among the fastest growing solid waste classes and represents a serious hazard for the environment.

a) Generation of waste:

Total Waste Consumption of Dayanand College of Pharmacy is 88 kg/month

Table No. 7: Category Wise Solid Waste Generation (kg/month)

Category of Waste	Paper Waste	Plastic Waste	Biodegradable/ Wet Waste	Glass Waste	Hazardous Waste
Quantity.	6.5	6	25	21	1.5

Table No.8: E-Waste Generation (kg/month)

Type of Waste	Generation Quantity	E-waste	E-waste treated and	
 	donor actor quantity	handled	disposed (kg)	
 E-waste	28	Reused	Ö	

b) Current practices of solid waste management

Waste management reduces the effect of waste on the environment, health, etc. It can also help reuse or recycle resources, such as; paper, cans, glass, etc. There are various types of waste management techniques that include the disposal of solid, liquid, gaseous, or hazardous substances. All the biodegradable waste along with paper waste produced in the college is sent to the microbial culture composting which then produces organic manure. This organic manure is used for trees in the campus.

Composting is a natural process that stems through microbial succession, marking the degradation and stabilization of organic matter present in waste. The use of microbial additives during composting is considered highly efficient, likely to enhance the production of different enzymes resulting in better rate of waste degradation. In lesser developed countries, composting has emerged as a vital technology to recycle the biodegradable waste while generating a useful product. Depending on the composition of the waste material, it can either directly undergo composting or homogenized prior to secondary waste treatment methods such as land filling.

The **Microbial Culture Composting** unit is situated near ladies hostel. All the wet waste from the hostels and other colleges is collected and then sent to the composting unit and the compost collected through this unit is then used as natural fertilizers for trees and plants in whole campus.

The **plastic waste** is collected and handed over to the scrap dealer or sent with municipal solid waste.

Hazardous waste is sterilized and sent for composting.

Majority of the **E-waste** is repaired and donated to schools for academic purposes. The minimal remaining e-waste is then sold to authorized scrap vendors.

Sanitary Napkin Incinerator: Incinerator uses electricity to heat the heating coil which in turn will light up the sanitary napkins when dumped into the incinerator. When the sanitary napkin burns, it is reduced to ashes and then disposed off.

Green and Environmental Audit Report of Dayanand College of Pharmacy 2019-20



Figure 16: Sanitary Napkin Incinerator

Figure 17: Waste Collection

Figure 18: Waste Segregation

Figure 19: Microbial Culture Composting

7.4 Biodiversity Conservation

The term biodiversity (from "biological diversity") refers to the variety of life on Earth at all its levels, from genes to ecosystems, and can encompass the evolutionary, ecological, and cultural processes that sustain life.

This aspect addresses all the flora and fauna of the campus. The list below has the name and quantity of trees as well as bird species.

Sr. No. Common name of plant		Botanical name	Quantity	Total
1.	Palm (large)	Roystonea regia	03	L
2.	Palm (small)	Roystonea regia	22	26
3.	Supari	Aareca catechu	01	
4.	Ashok	Saruca asoca	07	
5.	Mahogani	Swietenia mahagoni	02	
6.	Sagwan	Tectona grandis	02	
7.	Peepal	Ficus religiosa	01	
8.	Gulmohar	Delonix regia	02	
9.	Badam	Terminalia katappa	03	
10.	Subabhul	Leucaena leucocephala	02	
<u>11.</u>	Limbu	Citrus aurantifelia	02	
12.	Tamarind	Tamarindus indica	01	45
13.	Mango	Mangifera indica	01	
14.	Bamboo	Bambusoideae	01	
15.	Sururu	Casuarina equisetifolia	01	
16.	Nandurki	Toona ciliate	02	
17.	Nivdung	Cacti species	01	
18.	Takli	Silene conoidea L	02	
19.	Aapta	Bauhinia racemosa	02	

Table No.9: Trees in the campus

20.	Jaswand	Hibiscus rosasinensis	01	
. 21.	Ruchik	Calotropis gigantean	02	
22.	Adulsa	Justicia adhatoda	01	
23.	Chafa	Plumeria	02	
24.	Kektad	Agave Americana	02	
25.	Necha	Acorus calamus	03	
26.	Bogan Vel	Bouglanvillea glabra	01	
27.	Limbu	Citrus x aurantifolia	01	
28.	Buch	Millingtonia hortensis	02	
29.	Subabhul	Leucaena leucocephala	04	
30.	Gulmohar	Delonix regia	26	
31.	Peepal	Ficus religiosa	01	
32.	Ashok	Saraca asoca	02	
33.	Umbar	Ficus racemosa	01	
34.	Mahogani	Swietenia mahagoni	02	·
35.	Subabhul Karanji	Leucaena leucocephala	02	
	Karanji	Millettia pinna t a	01	
36,	Badam	Terminalia katappa	03	16
37.	Chafa	Plumeria	07	
38.	Swastik	Tabernaemontana divaricata	01	

Girls hostel area:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Bakuli	Minusops elengi	04	
2.	Shirish Gulabi	Albizia Lebbeck	10	
3.	Chafa	Plumeria	03	98
- 4.	Limbu	Citrus aurantiifolia	02	
5.	Kadam	Neolamarckia cadamba	05	

6.	Sitafal	Annona squamosa	03	
.7,	Limbu	Citrus aurantiifolia	02	
8.	Wad	Ficus benghalensis	01	
9.	Palm	Roystonea regia	14	
10.	Mango	Mangifera indica	10	
11.	Ja mbhul	Syzygium cumini	02	
12.	Mahogani	Swietenia mahagoni	02	1
13,	Limboni	Limonia acidssima L.	01	
14.	Jaswand	Híbiscus rosasinensis	05	
15.	Peepal	Ficus religiosa	01	
16.	Parijatak	Nyctanthes arbor-tristis	03	
17.	Christmas Tree	Araucaria columnaris	02	
18.	Ramfal	Annona reticulata	01	
19,	Swastik	Tabernaemontana	02	
20.	Adulsa	Justicia adhatoda	01	
21.	Sagwan	Tectona grandis	16	
22.	Shevga	Moringa oleifera	04	
23.	Dalimb	Punica granatum	02	
24.	Peru	Psidium guajava	02	

Arts College:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Ramfal	Annona reticulate	01	
2.	Subabhul	Leucaena leucocephala	03	
3.	Buch	Millingtonia hortensis	06	
- 4.	Mango	Mangifera indica	03	23
5.	Badam	Millettia pinnata	03	
6.	Fan palm	Livistona chinensis	07	
7.	Palm	Roystonea regia	03	

8,	Chafa	Plumeria	02	
9.	Chandan	Santalum album	01	
- 10.	Ashok	Saruca asoca	14	
11.	Christmas Tree	Araucaria columnaris	02	

Commerce Jr college:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Subabhul	Leucaena leucocephala	02	
2,	Mango	Mangifera indica	01	04
3.	Peepal	Flcus religiosa	01	

Main office area:

Sr .no	Common name of plant	Botanical name	Quantity	Total
1.	Subabhul	Leucaena leucocephala	04	
2.	Palm	Roystonea regia	04	
3.	Sonmohar	Peltophorum pterocarpum	05	18
4.	Badam	Millettia pinnata	03	
5.	Limbu	Citrus aurantiifolia	02	

Commerce College:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Nilgiri	Eucalyptus	02	
- 2.	Sonmohar	Peltophorum	10	
	Johnnohai	pterocarpum	pterocarpum 10	
3.	Ashok	Saruca asoca		a di seconda
4.	Palm	Roystonea regia	02	19
. 5.	Mango	Mangifera indica	03	
6.	Badam	Millettia pinnata	03	
7.	Gulmohar	Delonix regią	02	

8.	Limbu	Citrus aurantiifolia	03	
9,	Ashok	Saruea asoca	16	
10.	Kamal	Nelumbo nucif <mark>era</mark>	01	

Music department area:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Buch	Millingtonia hortensis	01	
2	Sonmohar	Peltophorum	02	04
*	Somional	pterocarpum	03	

Meeting hall area:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
. 1.	Buch	Millingtonia hortensis	10	
2.	Limbu	Citrus aurantiifolia	01	
3,	Peepal	Ficus religiosa	01	
4.	Subabhul	Leucaena leucocephala	05	
5.	Gulmohar	Delonix regia	07	
6.	Bakuli	Minusops elengi	03	
7.	lìmbu	Cítrus aurantiifolia	03	96
8.	Kadam	Neolamarckia cadamba	03	
9,	Chinch	Tamaríndus índica	01	
10.	Umbar	Ficus racemosa	02	
11.	Sonmohar	Peltophorum	04	a de la companya de l
		pterocarpum		
. 12.	English chinch	Pithecellobium dulce	01	

Canteen (behind meeting hall):

Sr. No.	Common name of plant	Botanical name	Quantity	Total
<u>.</u> 1.	Badam	Millettia pinnata	08	18

2.	Subabhul	Leucaena leucocephala	02	
3.	Umbar	Ficus racemosa	02	
4.	Peepal	Ficus religiosa	02	
5.	Kadam	Neolamarckia cadamba	03	
6.	Limbu	Citrus aurantiifolia	01	

Pharmacy College:

Sr. no	Common name of plant	Botanical name	Quantity	Total
1.	Ashoka	Saruca asoca	01	
2.	Badam	Terminalia catapa	06	
3.	Subabhul	Leucaena leucocephala	01	
4.	Mango	Mangifera indica	04	
5.	Palm	Roystonea regia	02	
6.	Peepal	Ficus relogiosa	02	
7,	Buch	Millingtonia hortensis	01	
8.	Chafa	Plumeria	02	
9.	Fan p a lm	Livistona chinensis	.02	
10.	Bakuli	Minussop <mark>s elngi</mark>	06	136
11.	Kadam	Neolamackia cadamba	02	130
12.	Gulmohar	Delonix regia	02	÷
13.	Sitafal	Annona squamosa	01	
14.	Jaswand	Hibiscus rosasinensis	01	
15.	Adulsa	Justicia adhatoda	01	
16.	Jambhul	Syzygium cumini	01	6
17.	Limbu	Citrus aurantifolia	01	
18.	Karanji	Millettia pinnata	01	
19.	Ghaneri	Lantana camara linn	01	
20.	Mahagoni	Swietenia mahagoni	02	

21.	Shevaga	Moringa olifera	02	
22.	Kadulimb	Azadirachta indica	04	
23.	Bor	Ziziphus mauritiana	01	
24.	Sonmohar	Peltophorum pterocarpum	01	
25.	Arjun	Terminalia arjuna	01	
26,	Awala	Phyllanthus emblica	01	
27.	Others		17	

Boys' hostel:

4

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Ash oka	Saruca asoca	06	
2,	Badam	Terminalia catapa	03	
3.	Bakuli	Minusops elengi	05	18
4.	Kadulimb	Azadirachta indica	01	10 - 1
5.	Mango	Mangifera indica	02	
6.	Apta	Bauhinia racemosa	01	

Gate no 9:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
· 1.	Gulmohar	Delonix regia	08	
2.	Shevaga	Moringa olifer a	03	
3,	Kadulimb	Azadirachta indíca	01	
4.	Badam	Terminalia catapa	01	46
- 5.	Subabhul	Leucaena leucocephala	02	а с 11
6.	English chinch	Pithecellobium dulce	01	
7.	Liboni	Limonia acidssima l	02	
8.	Others		29	

Architecture:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Palm	Roystonea regia	05	
2.	Gulmohar	Delonix regia	13	
3.	Chafa	Plumeria	73	90
4.	Mango	Mangifera indica	01	
5,	Kadulimb	Azadirachta indica	01	

Indoor stadium area:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Naral	Coco nucifera	05	
2.	Bakuli	Minusops elengi	15	
3,	Ashoka	Saruca asoca	01	
4.	Rubber	Hevea brasiliensis	01	24
5.	Jambhul	Syzygium cumini	02	49
6.	Ruchik	Calotropis gigantean	01	1995 (1974) 1997 - 1997 - 1997 1997 - 1997 - 1997
7.	Shisham	Dalbergia sissoo	01	
8.	Saptparni	Alstonia schoar <mark>is</mark>	01	

Boys' hostel (back area):

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Palm	Roystonea regia	-20	
2.	Subabhul	Leucaena leucocephala	02	
3.	Bamboo	Bambusoideae	02	.
4,	Arjun	Terminalia arjuna	05	
- 5.	Mango	Mangifera indica	03	36
6.	Chafa	Plumeria	01	
7.	Papaya	Carica	01	
8.	Peepal	Ficus relogiosa	02	

Well area:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Umbar	Ficus racemosa	01	
2.	Bakuli	Minusops elengi	09	11
3.	Nandurki	Toona ciliate	01	

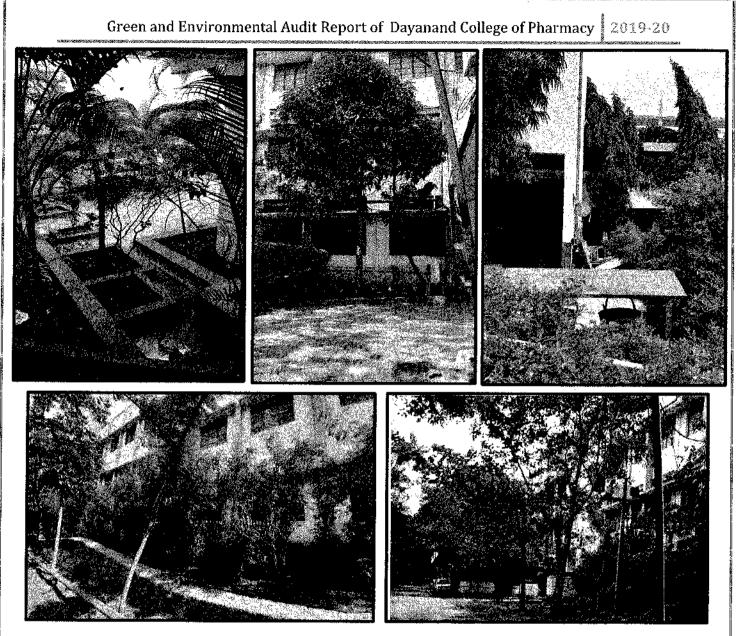
Cricket ground:

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Bakuli	Minusops elengi	07	
2.	Kadulimb	Azadirachta indica	03	
3.	Mahogani	Swietenia mahagoni	01	
· 4.	Shami	Prosopis cineraria	01	
5.	Vada	Ficus benghalensis	06	47
6.	Peepal	Ficus relogiosa	06	
, 7.	Subabhul	Leucaena leucocephala	10	
- 8.	Mango	Mangifera indica	01	
9,	Others		12	

Dayanand Law College (indoor area):

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Gulmohar	Delonix regia	-03	
2.	Chafa	Plumeria	50	
3.	Ashoka	Saruca asoca	16	
. 4.	Badam	Terminalia catapa	03	
5.	Suru	Casuarina equisetifolia	08	165
6.	Peru	Psidium guajava	01	
7.	Palm	Roystonea regia	29	۲. ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹
. 8.	Shevaga	Moringa olifera	01	
9.	Chickoo	Manikara zapota	01	

· 10.	Bel	Aegle marmelos	30	
11.	Rubber	Hevea brasiliensis	02	
12.	Mango	Mangifera indica	01	
13.	Anjir	Ficus carcía	02	
- 14.	Christmas Tree	Araucaria columnaris	01	
15.	Kadulimb	Azadirachta indica	10	
16.	Swastik	Tabernaemontana divaricata	02	


Dayanand Law College (outdoor area):

Sr. No.	Common name of plant	Botanical name	Quantity	Total
1.	Ashoka	Saruca asoca	07	11
2.	Karanji	Millettia pinnata	04	

Around playground:

Common name of plant	Botanical name	Quantity	Total
Vada, peepal, shirish, bakuli,	Infront of law building	29	
subabhul, buch, gulmohar, badam,	Gate no 5	67	
kadulimb, chafa, shevari, jambhul,	Gate no 4	75	237
chinch, chanadan, sitafal, ramfal,	Infront of arts		
parijatak, etc	building	43	
	Law side	23	

Total of trees in Dayanand Education Society Campus are 2464

Figure 20: Trees in the campus

Current Practices for Biodiversity Conservation

Biodiversity conservation refers to the protection, preservation, and management of ecosystems and natural habitats and ensuring that they are healthy and functional, to protect and preserve species diversity and to ensure sustainable management of the species and ecosystems. They plant more and more trees every year. The campus is 40% covered with vegetation on ground. They have also hanged water feeders on the trees for birds.

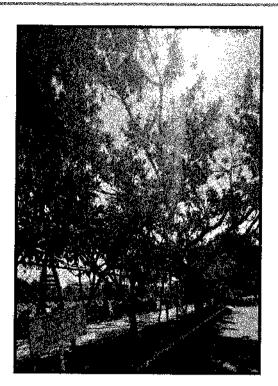


Figure 21: Vegetation around College of Pharmacy

A medicinal garden has been planted by the College of Pharmacy

Sr. No.	Common Name	Botanical Name	Family Name
1.	Aloe	Aloe barbadensis	Liliaceae
2.	Amla	Emblica officinalis	Euphorbiaceae
3.	Coriander	Corlandrum sativum	Umbelliferae
4.	Dill	Anethum graveolens	Umbelliferae
5.	Fennel	Foeniculum vulgare	Apiaceae (Umbelliferae)
6.	Garlic	Allium sativum	Liliaceae
7.	Ginger	Zingiber officinale	Zingiberaceae
8.	Mustard	Brassica nigra	Cruciferae
9,	Neem	Azadirachta indica	Meliaceae
10.	Squill	Urginea indica	Liliaceae
11.	Turmeric	Curcuma longa	Zingiberaceae
12.	Vinca	Cathranthus roseus	Apocynaceae
13.	Withania	Withania somnifera	Solanaceae
14.	Orange	Citrus sinensis	Rutaceae
15.	Guduchi	Tinospora cordifolia	Menispermaceae
16.	Carrot	Daucus carota	Apiaceae
17.	Sitaphal	Annona squamosa	Annonaceae
18.	Curry tree	Murraya koenigii	Rutaceae
19.	Mentha	Mentha spicata	Lamiaceae
20.	Drumstick tree	Moringa oleifera	Moringaceae
21.	Fenugreek	Trigonella foenum	Fabaceae
22.	Sandalwood	Santalum album	Santalaceae
23.	Васора	Bacopa monnieri	Plantaginaceae
24.	Kewda	Pandanus odoratissimus	Pandanaceae
25.	Mexicana	Argemone Mexicana	Papaveraceae
26.	Jambul	Syzygium cumini	Myrtaceae

27.	Acacia Arabica	Acacía Senegal	Fabaceae
28.	Tulasĭ	Ocimum tenuiflorum	Lamiaceae
29,	Ruchaki	Calotropis procera	Аросупасеае
30.	Rose	Rosadomascena	Rosaceae
31,	Bor	Ziziphus mauritiana	Rhamnaceae
32,	Adulsa	Adhatoda vasica	Acanthaceae
33.	Akarkara	Anacyclus pyrethrum	Asteraceae
34.	Chafa	Frangipani	Аросупасеае
35.	Lemon	Citrus limon	Rutaceae
36,	Jaswand	Hibiscus rosa	Malvaceae
37.	Peepal	Ficus religiosa	Moraceae
. 38.	Alu leaf	Colocasia esculenta	Araceae
39.	Калег	Nerium oleander	Apocynaceae
40.	Durva	Cynodon dactylon	Poaceae
41.	Datura	Datura Stramonium	Salanaceae
. 42.	Lemon Grass	Cymbopogon citrates	Poaceae
43.	Hirda	Terminalia Chebula	Combretaceae
44.	Arjuna	Terminalia arjuna	Combretaceae
45.	Coconut	Cocos nucifera	Arecaceae
46.	Black Pepper	Pipper nigrum	Piperaceae
47,	Kadamb	Neolamarckia cadamba	Rubiaceae
48.	Ashoka	Saraca indica	Fabaceae
49.	Ajwain	Carum copticum	Apiaceae
. 50.	Gokharu	Tribulus terrestris	Zygophyllaceae
51,	Carrot	Daucus carota	Apiaceae

-

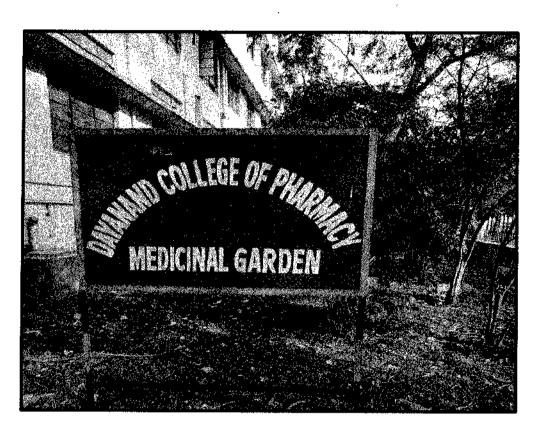
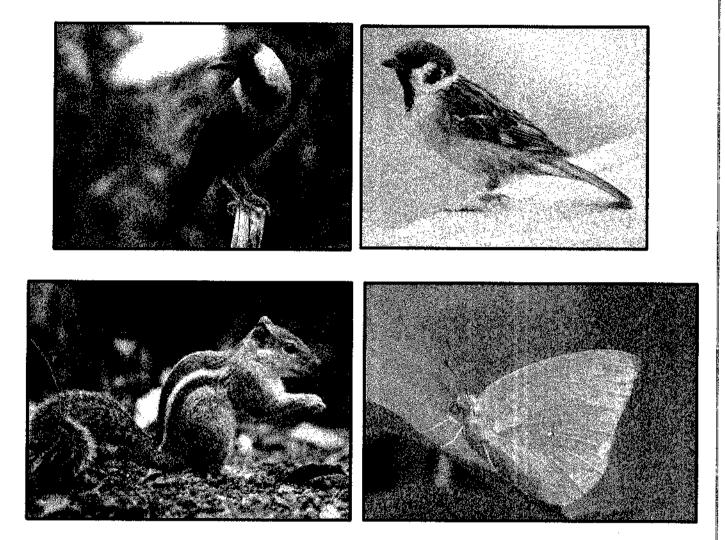



Figure 22: Medicinal Garden of the college

Animals in the college:

Table No 8: Fauna in the Campus

Sr. No.	Specie Name	Scientific Name		
1,	House Crow	Corvus splendens		
2.	House Sparrow	Passer domesticus		
3.	Domestic Pegion	Columba livia domestica		
4.	Crow Pheasant	Centropus sinensis		
5.	Indian Palm Squirrel	Funambulus palmarum		
6.	Common emigrant	Catopsilia pomona		
7.	Tawny coster	Acraea terpsicore		
8.	Common crow	Euploea core		

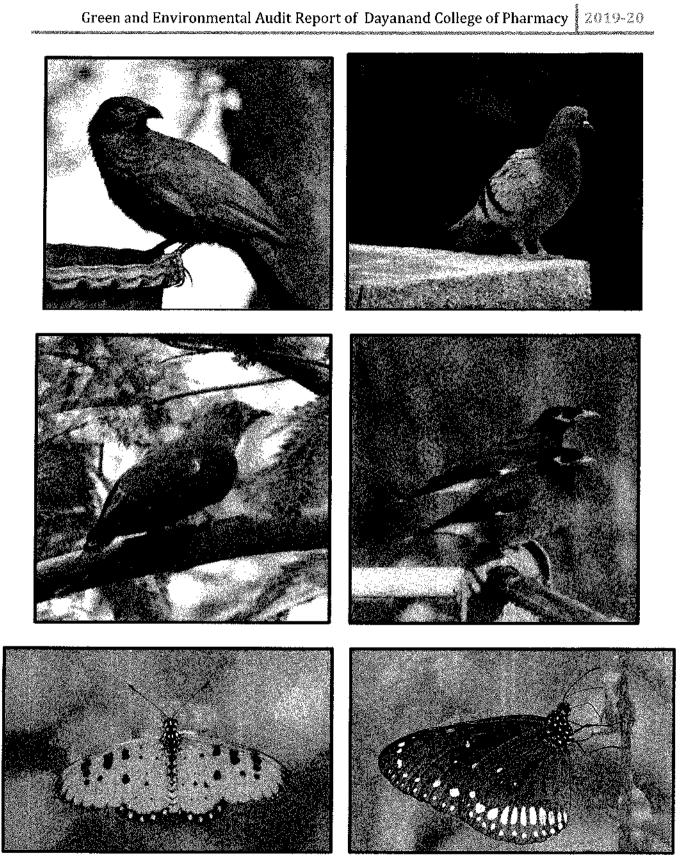


Figure 23: Fauna in the Campus

7.5 Air Quality

Air quality of an academic institute is very important for health of students, faculty and staff of College. The air pollution sources in the campus are wind storm, pollen grains, natural dust, vehicular emissions, generators, laboratory fumes, etc. Monitoring helps in assessing the level of pollution in relation to the ambient air quality standards. Standards are a regulatory measure to set the target for pollution reduction and achieve clean air. The air pollutants monitored on regular basis are Sulphur dioxide (SO₂), Oxides of Nitrogen as NOx, Suspended Particulate Matter (SPM) and Repairable Suspended Particulate Matter (RSPM) by High Volume Sample (HVS) as well as records of temperature, relative humidity are also been recorded for comparison. All the air quality parameters are within the standard limits of MPCB except SPM, suggesting ambient air quality of the campus is moderate and might cause minor breathing discomfort to sensitive people. The data is collected for Ambient Air Quality Monitoring under the program of NAMP by Maharashtra Pollution Control Board (MPCB).

Table 11: Air Quality Monitoring

	SO ₂	NOx	RSPM	SPM	
	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	
Standard	80	80	100	100	
Average for 2019-2020	5.5	20.7	90.8	191.6	

The above table shows that Sulphur dioxide (SO₂), Oxides of Nitrogen as NOx, and Repairable Suspended Particulate Matter (RSPM) are within limits; however, Suspended Particulate Matter (SPM) is above limits.

7.6 Carbon Footprint

A carbon footprint (CF) is the total amount of greenhouse gases (including carbon dioxide and methane) that are generated by our actions.

A carbon footprint is an estimate of the climate change impact of activity – such as making a product, living a lifestyle or running a company.

There are many existing and evolving standards for calculating carbon footprints but in truth no footprint is precise. For more complicated activities these uncertainties are greatly multiplied.

a) Carbon Emissions:

Гal	ole N	lo. 1	2:1	List	of	carbon	emissions
-----	-------	-------	-----	------	----	--------	-----------

Scope	Sources	Description
Scope 1 (Direct)	Equipments usage	DG set
Scope 2 (Indirect)	Electricity Use	Dayanand Education Society, Latur uses electricity to light and run appliances at its facilities.
Scope 3 (Indirect)	Employee commuting And raw materials transportation	Employees commute from their residences to the college and material transportations
	Wastewater treatment	College generates total 30 m³ of wastewater

Emission Data and Calculations:

• Scope 1 – All Direct Emissions from the activities of an institution or under their control. Including fuel combustion on site such as gas, etc.

Table No.13	: Scope	1 Emissions
-------------	---------	--------------------

Type of Fuel	Quantity	Emission Factor	KgCO ₂ /month	
Fuel used for DG set	5 lit/month	2.653	13.265	
LPG	9.5 Kg	2.983	28.3385	
TOTAL SCOI	PE 1 EMISSIONS		41.6035 Kg CO ₂ /month	

• Scope 2 – Indirect Emissions from electricity purchased and used by the institution. Emissions are created during the production of the energy and eventually used by the organisation.

Emissions from Purchased electricity:

Type of Emission Quantity **Emission Factor** Kg CO₂ Emissions from Purchased 4717 4575.5 0.97 electricity KWH/month Kg CO₂/month 2890 2803.3 **Renewable energy generation** 0.97 KWH/month Kg CO₂/month

Table No. 14: Indirect Emissions /scope 2 emissions

• Scope 3 – All Other Indirect Emissions from activities of the institution, occurring from sources that they do not own or control.

TOTAL SCOPE 2 EMISSIONS

A. Employee Transportation: Increase in student intake can lead to increased greenhouse gas (GHG) pollution caused by the resulting growth in vehicular traffic, energy use, and other activities. This unit seeks to identify the impact on global climate change through its emissions of greenhouse gases (GHGs), notably carbon dioxide (CO2). Transportation is the fastest growing major contributor to global climate change, accounting for 23% of energy-related carbon dioxide (CO2) emissions.

Mode of transportation	Daily Count	Travelling distance (km/Vehicle)	Total Km	Emission Factor	KgCO ₂
2 wheeler (teachers)	40	10	400	0.0319	12.76
4 Wheeler (Cars) Public Transport	2	10	20	0.13	2.6
a a a a a a a a a a a a a a a a a a a	6	20 TOTAL	120	0.01516	1.8192 17.179 Kg CO ₂ /day 515.376 Kg CO ₂ /month

4575.5

Kg CO₂/month

Table No. 16: Fuel Consumption through students Transportation

Mode of transportation	Daily Count	Travelling distance (km/Vehicle)	Total Km	Emission Factor	KgCO ₂
2 wheeler	136	10	1360	0.0319	43,38
Public Transport	87	20	1740	0.01516	26.378
		TOTAL			69.758 KgCO2/day
					2092.74 Kg CO2/month

B. Waste Water Generation:

Table No. 17: Waste Water Generation

Wastewater generated	Emission Factor	Total Kg CO ₂	
11500 lit/day 0.21		2415 Kg COz/day	
Total		72450	
		Kg CO ₂ /month	

C. Paper consumption:

Table No.18: Paper consumption

Paper consumption	Emission factor	Kg CO ₂
6.5 kg/ month	2,42	15.73 Kg CO2/month

D. Stationary goods:

Table No. 19: Stationary goods

Stationary goods	Emission factor	Kgco2	
6 kg/ month	2.4	14.4 Kg CO ₂ /month	

E. Solid Waste Generation:

Table No. 20: Dry Solid Waste Generation

Wet waste generated	Emission factor	Total Kg CO ₂
25 kg/month	0.21	5.25 Kg CO ₂ /month

• Total emissions throughout a year

Table No.21: Total emissions throughout an year

Reporting	Total Emissions	Total Emissions
Year	(Kg CO ₂ /month)	{Kg CO ₂ /year}
2020	79710.6	956527.2

Carbon Sequestration

Table No.22: Carbon Sequestration

Sr. No.	Common name of plant	Botanical name	Quantity	Kg CO2 sequestratio n/year	Total Kg CO ₂ sequestration
1,	Ashoka	Saruca asoca	07	1675.36	11727,52
2.	Badam	Terminalia catapa	06	419.22	2515.32
3;	Subabhul	Leucaena Ieucocephala	02	3976	7952
4.	Mango	Mangifera indica	04	2012.30	8049.2
5.	Palm	Roystonea regia	02	925.0	1850
6.	Peepal	Ficus relogiosa	02	1630	3260
7.	Buch	Millingtonia hortensis	02	142	284
8.	Chafa	Plumeria	07	50	350
9.	Fan palm	Livistona chinensis	02	14	28
10.	Bakuli	Minussops elngi	06	3	18
11.	Kadam	Neolamackia cadamba	02	50	100
12.	Gulmohar	Delonix regia	04	5705.37	22821.48
13.	Sitafal	Annona squamosa	01	16	16
14.	Jaswand	Hibiscus rosasinensis	06	3	18
15,	Adulsa	Justicio adhatoda	03	25	75
16.	Jambhul	Syzygium cumini	06	299	1794
17.	Limbu	Citrus aurantifolia	01	835.87	835.87
18.	Karanji	Millettia pinnata	01	217.20	217.20

19.	Ghaneri	Lantana camara linn	01	3	3
20.	Mahagoni	Swietenia mahagoni	02	803.80	1607.6
21,	Shevaga	Møringa olifera	02	37	74
22.	Kadulimb	Azadirachta indica	04	517.51	2070.04
23.	Bor	Ziziphus mouritiana	0Í	280	280
24.	Sonmohar	Peltophorum pterocarpum	01	145	145
25.	Arjun	Terminalia arjuna	01	10	10
26.	Awala	Phyllanthus emblica	01	671.38	671.38
				Total	66772.61

- Total carbon Emissions: 956527.2 Kg CO₂/year
- Carbon Sequestration: 66772.61 Kg CO₂/year
- Avoided Emissions: 2803.3 Kg CO₂/year
- Percentage of reduced carbon emissions: 7.27%

b) Carbon Emissions Management:

Global warming presents many environmental dangers, but as individuals, we pay the costs of climate change out of our own pockets. When we lower our individual carbon footprints – by reducing our consumption, using clean energy, or offsetting our emissions, we're investing in our long-term financial security.

For reducing Carbon Footprint of the college, all the staff as well as students observe 'No Vehicle Day' on every Saturday.

c) Mitigatory measures:

1. Make sure most teachers and students opt for public transport instead of using personal vehicle.

2. Use as much renewable sources of energy as you can.

3. Increase the solar energy consumption of overall college.

8.0 Innovative Strides

- The campus has hanged water feeders for birds on every tree
- The campus has started **Microbial Culture Composting** to convert the solid waste into manure which is given to the trees for better fertilization of the soil.
- The campus has initiated the successful **No Vehicle Day On Saturday Program** to reduce the pollution caused by the transportation The campus has distributed **Mask And Sanitizer** in whole latur city worth Rs. 8 lakhs
- The campus has installed Automatic Water sprinklers in cricket stadium

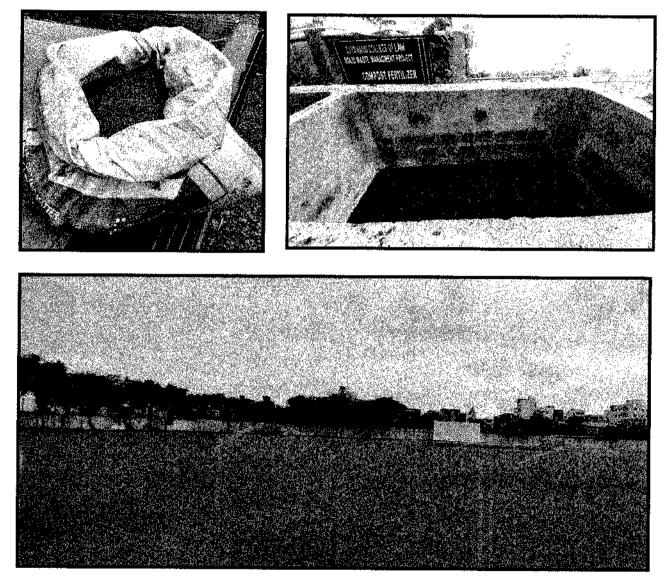


Figure 24: Innovations by the Campus

• **Tree Plantation** Program was organized by NSS at Venkatesh Residency, Latur. They planted 100 trees of different species

Figure 25: Tree Plantation by NSS

• An **awareness program on tuberculosis** was conducted where its treatment, facilities and its cure were explained

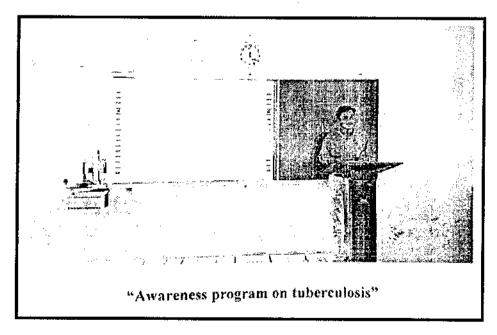


Figure 26: Awareness program on tuberculosis

9.0 Facilities Given by the Campus:

Cricket stadium:

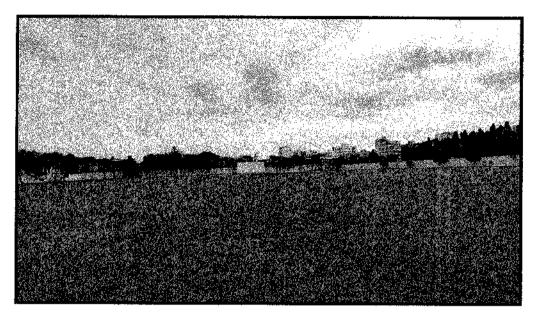


Figure 29: Cricket stadium

Separate gyms for girls and boys:

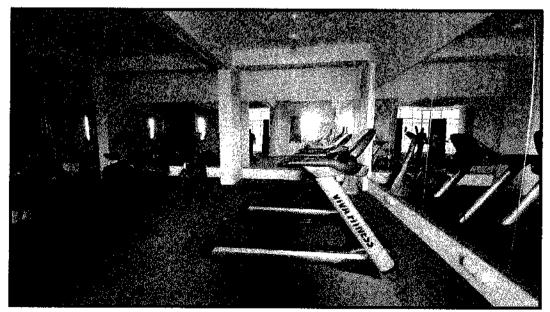


Figure 30: Separate gyms for girls and boys

Badminton court:

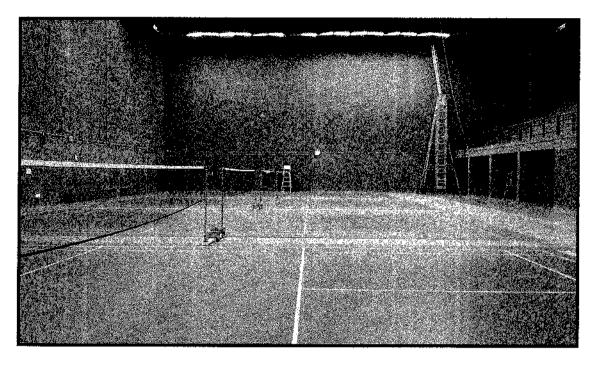


Figure 31: Badminton court

Auditorium:

Figure 32: Auditorium

10.0 Recommendations:

1. Water Management:

- Add aerators/regulators to taps to save water
- Pipes, overhead tanks and plumbing system should be maintained properly to reduce leakages and wastages of water
- Install water meters to measure water consumption regularly
- Set up college's own water recycling unit/STP where the recycled water can be used for gardening in college and hostels
- Perform water, energy and waste management audits frequently
- Non-teaching staff or peons in the concerned section should take responsibility of monitoring the overflow of water tanks
- Regularly do the water check of the treated water from the STP and drinking water

2. Energy:

- College has many areas where lighting is not required at all times. Installing sensor based lighting in such areas can generate massive rewards. This is one of the easiest ways to save energy at college.
- Replacing old computers and instruments with ones having energy efficiency certifications is the easiest way to conserve energy at the College.
- A huge amount of energy is wasted because no one really cares about switching off the fans and lights when not required. Hence, planning workshops on energy conservation to educate students, faculty and staff can generate huge results.
- Establish a purchase policy that is energy saving and eco-friendly
- Replace all incandescent and CFL lamps with LED lights
- The college needs to arrange the energy conservation program for the purpose of awareness of fuel energy conservation and motivation of students for use of non conventional energy devices.
- College needs to use alternative sources instead of use of LPG (Non conventional sources) for laboratory and other sources.

11.0 Conclusions

Green Audit is the most efficient way to identify the strength and weakness of environmental sustainable practices and to find a way to solve problems. Green Audit is one kind of a professional approach towards a responsible way in utilizing economic, financial, social and environmental resources. Green audit can "add value" to the management approaches being taken by the college and is a way of identifying, evaluating and managing environmental risks (known and unknown). A lot of recommendations provided by us in the Green and Environmental Report 2018-2019 have been incorporated by the college. There is scope for further improvement, particularly in relation to waste, energy and water management. The college in recent years considers the environmental impacts of most of its actions and makes a concerted effort to act in an environmentally responsible manner. Even though the college does perform fairly well, the recommendations in this report highlight many ways in which the college can work to improve its actions and become a more sustainable institution.

Our Team

1. Arati Bhosale:

Designation - Director

M. Sc. Environment, PGDISHE,

IGBC AP, GRIHA CP, LEED GA

EMS lead Auditor

Cll certified Carbon Footpront Professional

2. Dr. Ganesh Kadam:

PhD (Environmental Science & Technology)

M.Sc. (Env. Sci.), RIO +20 India (2013)

PGDISHE (Post Graduate Diploma in Industrial Safety Health & Environment)

PGDGIS (Post Graduate Diploma in Geoinformatics)

3. Sadiya Khan:

BE (Chemical)

Environmental Executive at Greenex Environmental

Work Experience:

Working on LCA, Carbon Footprint, Green Building certification and Green Audit Projects since 6 months

4. Lakshika Kotak:

BE (Chemical)

Environmental Executive at Greenex Environmental

Work Experience:

Working on LCA, Carbon Footprint, Green Building certification and Green Audit Projects since 6 months